The Stokes formula on manifold $\mathcal M$ reads \begin{equation}\label{eq:1} \int_{\mathcal M} \mathrm{d}\omega = \int_{\partial\mathcal M}\omega. \end{equation}

Haldane-Rezayi wave function takes the form of \(\psi_e(z)=f(z)e^{-y^2/2\ell},\) where \begin{align}\label{eq:2} f(z)=e^{ikz}\prod_{\nu=1}^{N_s}{\color{red}\boldsymbol\vartheta\left(\pi\dfrac{z-z_\nu}{L_1}\middle|\tau\right)} \end{align} is composed of the elliptic $\vartheta$-functions.

This is reference to Eq.\eqref{eq:1} and Eq.\eqref{eq:2}.